Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Rachid Ouarsal,^a Aziz Alaoui Tahiri,^a Brahim El Bali,^a Mohammed Lachkar^a and Michael Bolteb*

^aLaboratoire des Matériaux et Protection de l'Environnement, Départment de Chimie, Faculté des Sciences Dhar Mehraz, BP 1796 Atlas 30003, Fés, Morocco, and ^bInstitut für Organische Chemie, J.-W.-Goethe-Universität, Marie-Curie-Straße 11, D-60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 293 K Mean $\sigma(P-O) = 0.006 \text{ Å}$ H-atom completeness 0% R factor = 0.068 wR factor = 0.182 Data-to-parameter ratio = 13.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The crystal structure of strontium dihydrogenphosphite, Sr(H₂PO₃)₂, contains eightfold-coordinated Sr ions connected by dihydrogenphosphite anions so that a layer structure is formed.

Strontium dihydrogenphosphite

Received 4 January 2002 Accepted 15 January 2002 Online 25 January 2002

Comment

Crystal structure analyses of alkaline-earth phosphites have been undertaken for several decades. The first one was MgHPO₃·6H₂O (Corbridge, 1956); this structure was later reinvestigated by neutron and X-ray diffraction (Powell et al., 1994). Ca(H₂PO₃)₂·H₂O was reported by Larbot *et al.* (1984).

We present here the crystal structure of $Sr(H_2PO_3)_2$ (Fig. 1). The framework of the title compound can be described as layers perpendicular to the crystallographic c axis (Fig. 2). Sr is coordinated by eight O atoms, with bond distances ranging from 2.489 (5) to 2.753 (6) Å. There are three different types of O atoms: O13 is bonded only to P; O11 and O21 are bonded to P and one Sr atom; O12, O22 and O23 are bonded to P and two different Sr atoms. The average P-O distance of 1.54 (5) Å is similar to those reported in other dihydrogenophosphites: 1.523 Å in Ca(H₂PO₃)₂·H₂O or 1.513 Å in Zn(H₂PO₃)₃·0.333H₂O (Durand et al., 1992).

Experimental

25 ml of $SrCl_2 \cdot 6H_2O(0.1 M)$ was added to a 25 ml aliquot of 1 M H₃PO₃ in water. The resulting solution was stirred for 8 h, at 333 K, before being left at room temperature. After a few days, large colourless block-shaped crystals were deposited. These were filtered off and washed with a solution of ethanol (80%).

The asymmetric unit of the title compound with atom labelling and

displacement ellipsoids drawn at the 50% probability level.

Figure 1

© 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Cryst. (2002). E58, i19-i20

inorganic papers

Figure 2

The crystal structure of $Sr(H_2PO_3)_2$, viewed perpendicular to the c axis. Key: Sr green, P violet and O red.

Crystal data

Sr(H₂PO₃)₂ Z = 2 $M_r = 249.59$ Triclinic, $P\overline{1}$ Mo $K\alpha$ radiation a = 5.797 (1) Åb = 7.206(1) Å reflections c = 8.068 (1) Å $\theta = 3.6 - 28.2^{\circ}$ $\alpha = 97.87 (1)^{\circ}$ $\mu = 9.33 \text{ mm}^{-1}$ $\beta = 104.51 (1)^{\circ}$ T = 293 (2) K $\gamma = 106.55 (1)^{\circ}$ Block, colourless V = 304.78 (8) Å³

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: multiscan (MULABS; Spek, 1990; Blessing, 1995) $T_{\min} = 0.121, \ T_{\max} = 0.394$

 $D_{\rm r} = 2.720 {\rm Mg} {\rm m}^{-3}$ Cell parameters from 688 $0.30 \times 0.20 \times 0.10$ mm

1079 measured reflections 1079 independent reflections 1045 reflections with $I > 2\sigma(I)$ $\theta_{\rm max} = 25.0^\circ$ $h=-6\to 6$ $k = -8 \rightarrow 8$ $l = 0 \rightarrow 9$

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.1484P)^2]$
+ 0.2956 <i>P</i>]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 1.13 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -3.05 \text{ e } \text{\AA}^{-3}$

Table 1

Selected interatomic distances (Å).

Sr1-O23 ⁱ	2.489 (5)	Sr1-O21 ^{iv}	2.753 (6)
Sr1-O22 ⁱⁱ	2.513 (5)	P1-O12	1.504 (5)
Sr1-O12 ⁱⁱⁱ	2.537 (5)	P1-O11	1.502 (5)
Sr1-O12	2.593 (5)	P1-O13	1.591 (6)
Sr1-O11 ⁱ	2.682 (5)	P2-O22	1.495 (5)
Sr1-O23	2.687 (5)	P2-O23	1.515 (5)
Sr1-O22	2.723 (5)	P2-O21	1.608 (5)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 1 - z; (iii) -x, 1 - y, 1 - z; (iv) x - 1, y, z.

The H atoms could not be located and were therefore not included in the refinement process.

Data collection: X-Area (Stoe & Cie, 2001); cell refinement: X-Area; data reduction: X-Area; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 1991).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Corbridge, D. E. C. (1956). Acta Cryst. 9, 991-994.

Durand, J., Cot, L., Sghyar, M. & Rafio, M. (1992). Acta Cryst. C48, 1171-1173.

Larbot, A., Durand, J. & Cot, L. (1984). Z. Anorg. Allg. Chem. 508, 154-158. Powell, D. R., Smith, S. K., Farrar, T. C. & Ross. F. K. (1994). Acta Cryst. C50,

342-346

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-Area. Stoe and Cie, Darmstadt, Germany.